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Peristaltic flow of a Newtonian fluid through a 
porous medium in a two-dimensional channel 

with Hall effects. 

 
 

 

  

Abstract—In this paper, the effect of Hall on the peristaltic 
pumping of a Newtonian Fluid in a two dimensional channel 
under the assumption of long wavelength is investigated. A 
Closed form solutions are obtained for axial velocity and 
pressure gradient. The effects of various emerging parameters 
on the pressure gradient, time averaged volume flow rate and 
frictional force are discussed with the aid of graphs. 

Keywords—Hall,  Newtonian  fluid, Hartmann number, long 
wavelength, peristaltic pumping, Darcy number. 

I. INTRODUCTION  
Magnetohydrodynamics (MHD) is the science 

which deals with the motion of a highly conducting fluid in 

the presence of a magnetic field. The motion of the 

conducting fluid across the magnetic field generates electric 

currents which change the magnetic field, and the action of 

the magnetic field on these currents gives rise to mechanical 

forces which modify the flow of the fluid (Ferraro[7]). The 

Magnetohydrodynamic (MHD) flow of a fluid in a channel 

with elastic, rhythmically contracting walls (peristaltic flow) 

is of interest in connection with certain problems of the 

movement of conductive physiological fluids, e.g., the 

blood, blood pump machines and with the need for 

theoretical research on the operation of a peristaltic MHD 

compressor. Agrawal and Anwaruddin [1] studied the effect 

of moving magnetic field on blood flow. They studied a 

simple mathematical model for blood through an equally 

branched channel with flexible outer walls executing 

peristaltic waves. The result revealed that the velocity of the 

fluid increases with an increase in the magnetic field. 

Peristaltic transport of a Johnson-Segalman fluid under the 

effect of a magnetic field was developed by Elshahed and 

Haroun [4]. The peristaltic flow of a MHD fourth grade 

fluid in a planer channel has studied by Hayat et al. [9]. Ali 

et al. [2] have investigated the effect of slip condition on the 

peristaltic flow of a Newtonian fluid with variable viscosity 

under the influence of magnetic field. Non-linear peristaltic 

motion of a Carreau fluid under the effect of a magnetic 

field in an inclined   planar channel was studied by Subba 

Reddy and Gangadhar [13].  Subba Narasimhudu and Subba 

Reddy [12] have studied the Hall effects on the peristaltic 

flow of a Newtonian fluid in a channel.   

Moreover, flow through a porous medium has been 

studied by a number of researchers employing Darcy’s law 

Scheidegger [11].  Some studies about this point have been 

given by Varshney [16] and Raptis and Perdikis [10].  The 

first study of peristaltic flow through a porous medium is 

presented by Elsehawey et al. [5]. Elsehawey et al. [6] 

investigated the peristaltic motion of a generalized 

Newtonian fluid through a porous medium. Hayat et al. [8] 

have first investigated the Hall effects on the peristaltic flow 

of a Maxwell fluid trough a porous medium in channel. 

Peristaltic motion of a Carreau fluid through a porous 
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medium in a channel under the effect of a magnetic field 

was studied by Sudhakar Reddy et al. [15]. Subba Reddy 

and Prasanath Reddy [14] have investigated the effect of 

variable viscosity on peristaltic flow of a Jeffrey fluid 

through a porous medium in a planar channel. Eldabe et al.  

[3] have studied the Hall Effect on peristaltic flow of third 

order fluid in a porous medium with heat and mass transfer.  

 In view of these, we studied the effect of hall on 

the peristaltic flow of a Newtonian fluid through a porous 

medium in a two dimensional channel under the assumption 

of long wavelength. A closed form solution is obtained for 

axial velocity, temperature field and pressure gradient. The 

effects of various emerging parameters on the pressure 

gradient, time-averaged volume flow rate and temperature 

field are discussed with the help of graphs.  

II. MATHEMATICAL FORMULATION 
We consider the peristaltic pumping of a conducting 

Newtonian fluid flow through a porous medium in a channel 

of half-width a . A longitudinal train of progressive 

sinusoidal waves takes place on the upper and lower walls 

of the channel. For simplicity, we restrict our discussion to 

the half-width of the channel as shown in the Fig.1. The 

wall deformation is given by  

( ) ( )2, sinH X t a b X ctπ
λ

 = + −  
    (2.1) 

where b  is the amplitude, λ  is the wavelength and  c   is 

the wave speed.  

 
Fig. 1 Physical Model 

Under the assumptions that the channel length is an 

integral multiple of the wavelength  and the pressure 

difference across the ends of the channel is a constant, the 

flow becomes steady in the wave frame ( ),x y   moving with 

velocity c away from the fixed (laboratory) frame ( ),X Y . 

The transformation between these two frames is given by  

 ,  ,   ,   x X c t y Y u U c v V= − = = − =    and  

  ( )  ( ,  ),p x P X t=             (2.2) 

where ( ),  u v and ( ),  U V  are the velocity components,  p   

and  P   are pressures in the wave and fixed frames of 

reference, respectively.  

The equations governing the flow in wave frame are given 

by  

0u v
x y
∂ ∂

+ =
∂ ∂

,      (2.3) 
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 (2.5)  

where ρ is the density σ  is the electrical conductivity, 0B  

is the magnetic field strength, m  is the Hall parameter,  k  is 

the permeability of the porous medium. 

The dimensional boundary conditions are 

u c= −   at y H=      (2.6) 

0u
y
∂

=
∂

  at 0y =                      (2.7) 

Introducing the non-dimensional quantities 
2

, , , , , ,x y u v a pax y u v p
a c c c

δ
λ δ λ µ λ

= = = = = =  

, , ,ct H bt h
a a

φ
λ

= = =
2 2

2 0,
a Bqq M

ac
σ

µ
= = , 2

kDa
a

=  

Into equations (2.3) to (2.5), we get 
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0u v
x y
∂ ∂

+ =
∂ ∂

     (2.8) 
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      (2.10) 

Here Re  is the Reynolds number, M  is the Hartmann 

number and Da  is the Darcy number.  

Using long wavelength (i.e. 1δ << ) approximation, the 

equations (2.9) and (2.10) become  
2

2 2
2

u pu
xy

β β∂ ∂
− = +

∂∂
    (2.11) 

 0p
y
∂

=
∂

                (2.12) 

where  
2

2

1
1

M
Dam

β = +
+

.  

 

From Eq. (2.12), it is clear that p  is independent of y . 

Therefore Eq. (2.11) can be rewritten as 
2

2 2
2

u dpu
dxy

β β∂
− = +

∂
                         (2.13) 

The corresponding non-dimensional boundary conditions 

are given as 

1u = −  at 1 sin 2y h xφ π= = +            (2.14) 

0u
y
∂

=
∂

 at 0y =               (2.15) 

Knowing the velocity, the volume flow rate q  in a wave 

frame of reference is given by 

0

h
q udy= ∫ .                  (2.16) 

The instantaneous flow Q ( , )X t  in the laboratory 

frame is 

( )
0 0

( , ) 1
h h

Q X t UdY u dy q h= = + = +∫ ∫   
 (2.17) 

 
The time averaged volume flow rate Q  over one period 

T
c
λ = 

 
 of the peristaltic wave is given by 

0

1 1
T

Q Qdt q
T

= = +∫                (2.18) 

III. SOLUTION 
Solving Eq. (2.13) together with the boundary conditions (2.14) 
and (2.15), we get 

2

1 cosh 1 1
cosh

dp yu
dx h

β
ββ

 
= − − 

 
   

                       (3.1) 
The volume flow rate q  in a wave frame of reference is 

given by 

3

1 sinh cosh
cosh

dp h h hq h
dx h

β β β
ββ

 −
= − 

 
   

                       (3.2) 

From Eq. (3.3), we write 

( ) 3 cosh
sinh cosh

q h hdp
dx h h h

β β
β β β
+

=
−

   

                      (3.3)  

The dimensionless pressure rise per one wavelength in 

the wave frame is defined as  

 
1

0

dpp dx
dx

∆ = ∫
       

(3.4) 

As Da →∞ , our results coincides with the results of  

Subbanarasimhudu and Subba Reddy [12].  

IV. RESULTS AND DISCUSSIONS 
 

Fig. 2 depicts the variation of axial pressure gradient 
dp
dx

 with Hartmann number M  for 0.1Da = ,  0.6φ =  

and 0.3m = . It is found that, the axial pressure gradient 
dp
dx  

increases with increasing M .  

The variation of axial pressure gradient 
dp
dx

 with Hall 

parameter m  for 0.1Da = , 0.6φ =  and 1M =  is depicted in 

Fig. 3. It is observed that, the axial pressure gradient
dp
dx

 decreases 

with increasing m . 
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Fig. 4 illustrates the variation of axial pressure gradient 

dp
dx

 with Darcy number Da  for 0.6φ = , 1M =  and 0.3m = . It 

is noted that, the axial pressure gradient 
dp
dx

 decreases on 

increasing Da .   

 

Fig. 2. The variation of axial pressure gradient 
dp
dx

 with Hartmann 

number M for 0.5φ = , 0.1Da =  and 0.2m =  . 
 

The variation of axial pressure gradient 
dp
dx

 with 

amplitude ratio φ  for 0.1Da = , 1M =  and 0.3m =  is shown 

in Fig. 5. It is noticed that, the axial pressure gradient 
dp
dx

 

increases on increasingφ .   

 

Fig. 3. The variation of axial pressure gradient 
dp
dx

 with Hall 

parameter m for 0.5φ = , 0.1Da = and 1M =  
 

Fig. 6 depicts the variation of pressure rise p∆  with 

time-averaged flow rate Q  for different values of Hartmann 

number M  with 0.1Da = , 0.6φ =  and 0.3m = . It is found 

that, the time-averaged flow rate Q  increases in the pumping 

region ( )0p∆ >   with increasing M , while it decreases in both 

the free-pumping ( )0p∆ =  and co-pumping ( )0p∆ <  regions 

with increasing M . 

 

Fig. 4. The variation of axial pressure gradient 
dp
dx

 with Darcy 

number Da  for 0.5φ = , 0.2m = and 1M =  .  

 

Fig. 5. The variation of axial pressure gradient 
dp
dx

 with amplitude 

ratio φ for 1M = , 0.1Da =  and 0.2m = .  
 

 

The variation of pressure rise p∆  with time-averaged 

flow rate Q  for different values of Hall parameter m  

with 0.1Da = , 0.6φ =  and 1M =  is depicted in Fig. 7.  It is 

found that, the time-averaged flow rate Q  decreases in the 
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pumping region on  increasing m , while it increases in both the 

free-pumping and co-pumping regions on increasing m .     

 
 
Fig. 6. The variation of pressure rise p∆  with time-averaged flow 

rate Q  for different values of Hartmann number 
M with 0.1Da = , 0.5φ =  and 0.2m = .  

 

Fig. 8 illustrates the variation of pressure rise p∆  with 

time-averaged flow rate Q  for different values of Darcy parameter 

Da  with 0.3m = , 0.6φ =  and 1M = .  It is found that, the 

time-averaged flow rate Q  decreases in the pumping region with 

an increase in Da , while it increases in both the free-pumping and 

co-pumping regions with increasing Da .     

The variation of pressure rise p∆  with time-averaged 

flow rate Q  for different values of amplitude ratio φ  

with 0.1Da = , 1M =  and 0.3m =  is shown in Fig. 9. It is 

found that that the time-averaged flow rate Q  increases with 

increasing amplitude ratio φ   in both the pumping and free 

pumping regions, while it decreases with increasing amplitude 

ratio φ  in the co-pumping region for chosen ( )0p∆ < .   

 

 
 
Fig. 7. The variation of pressure rise p∆  with time-averaged flow 

rate Q  for different values of Hall parameter m with 0.1Da = , 
0.5φ =  and 1M = .   

 
Fig. 8. The variation of pressure rise p∆  with time-averaged flow 

rate Q  for different values of Darcy number Da with 0.2m = , 
0.5φ =  and 1M = .   
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Fig. 9. The variation of pressure rise p∆  with time-averaged flow 

rate Q  for different values of amplitude ratio φ  with 
1M = and 0.2m = . 

   

V. CONCLUSIONS 
In this paper, the effect of hall on the 

peristaltic flow of a conducting fluid through a porous 

medium in a two-dimensional channel under the 

assumption of long wavelength approximation is 

investigated. The expressions for the velocity field and 

temperature field and pressure gradient are obtained 

analytically. It is observed that, the pressure gradient 

and the time-averaged flow rate in the pumping region 

are increases with increasing Hartmann number M   

and amplitude ratio φ  , while they decreases with 

increasing hall parameter m   and Darcy number Da .   
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